Muscle-Derived Mitochondria as a Novel Therapy for Muscle Degeneration After Rotator Cuff Tears
J Bone Joint Surg Am. 2025 Apr 25. doi: 10.2106/JBJS.24.01322. Online ahead of print.
ABSTRACT
BACKGROUND: Rotator cuff tears (RCTs) commonly lead to muscle atrophy, fatty infiltration, and fibrosis, resulting in pain, weakness, and impaired shoulder mobility. These pathological changes are often irreversible and pose substantial treatment challenges. The aim of this study was to evaluate the therapeutic potential of muscle-derived mitochondria (Mito) in mitigating muscle degeneration and fibrosis following RCTs.
METHODS: Sprague Dawley rats were assigned to 3 groups: sham surgery, RCTs treated with Mito, or RCTs treated with phosphate-buffered saline solution (PBS). Following RCTs, in vivo Mito or PBS treatments were administered to the supraspinatus muscles (SSPs) of the rats immediately and then biweekly for 12 weeks. Data were collected on muscle morphology, fibrosis, fatty infiltration, oxidative stress, mitochondrial function, macrophage phenotypes, and serum inflammatory cytokines. In vitro experiments included mitochondria tracking in bone marrow-derived macrophages (BMDMs), characterization of macrophage polarization, and inflammatory cytokine profiling.
RESULTS: Isolated mitochondria preserved their morphology and function. Mito treatment improved muscle wet weight (p < 0.0001) and fiber cross-sectional area (p < 0.0001) while reducing fibrosis (p < 0.0001) and fatty infiltration (p < 0.0001). It upregulated mitochondrial markers cytochrome c oxidase (COX IV) and translocase of outer mitochondrial membrane 20 (TOMM20) (p < 0.0001) and enhanced antioxidative activity, as shown by increased superoxide dismutase (SOD) activity (p < 0.0001), elevated glutathione peroxidase (GSH-PX) levels (p = 0.038), and decreased malondialdehyde (MDA) levels (p = 0.0002). Mitochondrial density and morphology were restored in SSPs after Mito treatment. Additionally, Mito treatment induced an anti-inflammatory macrophage phenotype and reduced pro-inflammatory cytokines in vivo and in vitro.
CONCLUSIONS: Mito treatment mitigated muscle degeneration, improved mitochondrial function, and fostered an anti-inflammatory environment through macrophage modulation, demonstrating its potential as a cell-free therapeutic strategy for RCT-related muscle pathologies.
CLINICAL RELEVANCE: Although this is a preclinical study, its approach offers a novel avenue for improving RCT treatment outcomes. However, further validation in large animal models is needed to address the translational applicability of these findings, given the inherent regenerative capacity of rodent muscles.
PMID:40279441 | DOI:10.2106/JBJS.24.01322